
High-Performance Linear Algebra Processor using

FPGA ∗

J. R. Johnson† P. Nagvajara‡ C. Nwankpa§

1 Extended Abstract

With recent advances in FPGA (Field Programmable Gate Array) technol-
ogy it is now feasible to use these devices to build special purpose processors
for floating point intensive applications that arise in scientific computing.
FPGA provides programmable hardware that can be used to design custom
hardware without the high-cost of traditional hardware design. In this talk
we discuss two multi-processor designs using FPGA for basic linear algebra
computations such as matrix multiplication and LU factorization. The first
design is a purely hardware solution for dense matrix computations, and the
second design uses a hardware/software solution for sparse matrix compu-
tations. The hardware solution uses the regular structure available in dense
linear algebra computations to design custom processors with hard-wired
communication patterns. The hardware/software solution uses embedded
processors with the flexibility to program the irregular communication pat-
terns required by sparse matrix computations.

The dense matrix processor utilizes a distributed memory architecture
connected in a ring topology, with hardwired control for communication.
Each processing element consists of pipelined multiply-accumulate hard-
ware, and local memory to store part of the input and output matrices.

∗This work was partially supported by DOE grant #ER63384, PowerGrid - A Com-
putation Engine for Large-Scale Electric Networks

†Department of Computer Science, Drexel University, Philadelphia, PA 19104. email:
jjohnson@cs.drexel.edu

‡Department of Electrical and Computer Engineering, Drexel University, Philadelphia,
PA 19104. email: nagvajara@ece.drexel.edu

§Department of Electrical and Computer Engineering, Drexel University, Philadelphia,
PA 19104. email: chika@nwankpa.ece.drexel.edu

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 AUG 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
High-Performance Linear Algebra Processor using FPGA

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Drexel University

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001694, HPEC-6-Vol 1 ESC-TR-2003-081; High Performance Embedded Computing
(HPEC) Workshop (7th)., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Extra buffers are available to provide overlapped communication and com-
putation so that while a computation is being performed the next inputs
can be downloaded from the host computer. This allows the FPGA to be
used as a hardware accelerator as part of a larger matrix computation us-
ing various block algorithms. In fact, the matrix processor supports BLAS
routines such as GEMM (http://www.netlib.org/blas/).

The sparse matrix processor also uses a distributed memory architecture,
however, it uses embedded processor cores which execute parallel programs
written in C. A ring interconnect was designed and special instructions
were added to the processor cores to support interprocessor communica-
tion. In addition, hardware support for floating point computations were
added which are accessible to the processor through extra instructions. A
parallel algorithm for LU factorization was implemented.

The resulting processor for sparse LU factorization is being designed for
applications in power computations, where very large sparse systems aris-
ing from load-flow computation are solved as part of the Newton-Raphson
method for solving a system of non-linear equations. These systems have
problem specific structure which can be incorporated into the processor de-
sign. While the current investigation centers around this application, many
other problems could benefit from a high-performance processor geared to-
wards both sparse and dense matrix computations.

In this work parameterized designs, allowing a scalable number of proces-
sors, were created using the hardware definition language VHDL. The result-
ing design was synthesized and testing using the cyclone development board
from Altera (http://www.altera.com/). Embedded NIOS processors were
used for the processor for sparse LU factorization. While this board allowed
verification of the design, it does not have sufficient hardware resources to
adequately demonstrate the potential performance. Current FPGA devices
have built-in hardware multipliers and large amounts of on chip memory, in
addition to a large number of programmable logic blocks. These resources
are crucial to obtaining high-performance, especially for computations with
floating point numbers. For example, the Xilinx Virtex 2 (XC2V8000), see
www.xilinx.com, has 168 pipelined 18-bit multipliers which can be used to
implement 42 single-precision multiply-accumulate units.

Consequently a high-level performance model was created to estimate
the performance using the high-end FPGA devices that are currently avail-
able and those that will be available in the next few years. The pred-
icated performance was compared to efficient software solutions on high-
speed workstations and clusters of workstations. Using clock speeds and
the number of processors that can be implemented on the Virtex 2, a

2

400 × 400 matrix can be multiplied in 11ms, which corresponds to 11,570
MFLOPS. This compares to 10,000 MFLOPS obtained using a four proces-
sor 800 MHz Itanium processor with the Intel Math Kernel library (see
http://www.intel.com/software/products/mkl/mkl52/specs.htm).

A similar performance model was used for the sparse linear solver. As-
suming eight processors running at 400MHz with an 80 MHz floating point
unit, which is currently possible using Xilinx FPGAs with a floating point
core sold from Digital Core Design (http://www.dcd.com.pl/), the linear
system needed to solve the 7917-bus power system could be solved in .084
seconds as compared to .666 seconds using the WSMP sparse linear solver
(http://www.research.ibm.com/math/OpResearch/wsmp.html) on a 1.4GHz
Pentium IV. While the times reported here are estimates based on a per-
formance model, and hence should not be taken at face value, they show
enough promise that the use of high-end FPGA devices, on a board with
multiple FPGAs, to build a special-purpose linear algebra processor should
be seriously investigated.

3

HPEC 2003

Linear Algebra
Processor

using FPGA
Jeremy Johnson, Jeremy Johnson, Prawat Prawat

NagvajaraNagvajara, Chika , Chika NwankpaNwankpa
Drexel UniversityDrexel University

U lt ra-F as t B us

P owerG rid

Economic Analysis
Station

Decision Making
StationEngineering

Analysis Station

Hardware Power System
Model

Tie-Line Flows

HPEC 2003

Goal

To design an embedded FPGATo design an embedded FPGA--based based
multiprocessor system to perform high speed multiprocessor system to perform high speed
Power Flow Analysis.Power Flow Analysis.
To provide a single desktop environment to To provide a single desktop environment to
solve the entire package of Power Flow Problem solve the entire package of Power Flow Problem
(Multiprocessors on the Desktop).(Multiprocessors on the Desktop).
Provide a scalable solution to load flow Provide a scalable solution to load flow
computation.computation.
Deliver: Prototype and feasibility analysis.Deliver: Prototype and feasibility analysis.

HPEC 2003

ApproachApproach

Utilize parallel algorithms for matrix operations Utilize parallel algorithms for matrix operations
needed in load flow.needed in load flow.
Utilize sparsity structure across contingencies.Utilize sparsity structure across contingencies.
Use multiple embedded processors with Use multiple embedded processors with
problem specific instruction and interconnect.problem specific instruction and interconnect.
Scalable parameterized design.Scalable parameterized design.
Pipelined solution for contingency analysis.Pipelined solution for contingency analysis.

HPEC 2003

Dense Matrix Multiplier

Distributed memory implementationDistributed memory implementation
Hardwired control for communicationHardwired control for communication
Parameterized number of processing elements (multiply and Parameterized number of processing elements (multiply and
accumulate hardware)accumulate hardware)
Overlap computation and communicationOverlap computation and communication
Use block matrix algorithms with calls to FPGA for large Use block matrix algorithms with calls to FPGA for large
problems problems

Processor i stores AProcessor i stores Aii, the , the ithith block of rows of A and block of rows of A and BBjj, ,
the the jthjth block of columns of Bblock of columns of B

Compute Compute CCijij = A= Aii * * BBj j

Rotate: send Rotate: send BBjj to processor (j+1) mod Number of processorsto processor (j+1) mod Number of processors

HPEC 2003

Processor Architecture

Host PC

FPGA Board

PCI

Off-chip
RAM
units

Interconnection Network (BUS)

Embedded
SRAM

unit

Multiply/
Add unit

Embedded
SRAM

unit

Multiply/
Add unit

Embedded
SRAM

unit

Multiply/
Add unit

…

HPEC 2003

Performance
Performance estimatePerformance estimate

XilinxXilinx VirtexVirtex 2 (XC2V80002 (XC2V8000))

168 built168 built--in multipliers and on chip memories (SRAM) in multipliers and on chip memories (SRAM) ⇒⇒
support for 42 singlesupport for 42 single--precision processing elementsprecision processing elements

4.11 ns pipelined 18 X 18 bit multiplier4.11 ns pipelined 18 X 18 bit multiplier
2.39 ns memory access time2.39 ns memory access time
7.26 ns for multiply accumulate 7.26 ns for multiply accumulate

Time for n Time for n ×× n matrix multiply with p n matrix multiply with p
processorsprocessors

7.26n7.26n33/p ns/p ns
11 ms for n=400, p = 42 11 ms for n=400, p = 42 ⇒⇒ 11,570 MFLOPS11,570 MFLOPS

HPEC 2003

APPLICATION, ALGORITHM &
SCHEDULE

Application
Linear solver in PowerLinear solver in Power--flow solution for large systemsflow solution for large systems
NewtonNewton--RaphsonRaphson loops for convergence,loops for convergence, JacobianJacobian
matrixmatrix

Algorithm & ScheduleAlgorithm & Schedule
PrePre--permute columnspermute columns
Sparse LU factorization, Forward and Backward Sparse LU factorization, Forward and Backward
SubstitutionsSubstitutions
Schedule: Round Robin distribution of rows ofSchedule: Round Robin distribution of rows of
JacobianJacobian matrix according to the pattern of column matrix according to the pattern of column
permutationpermutation

HPEC 2003

Data Input Extract Data Ybus

LU FactorizationForward SubstitutionBackward Substitution

Jacobian Matrix

Post Processing

Update Jacobian matrixMismatch < Accuracy

HOST

HOST

YES

NO

Problem

Formulation

(Serial)

Problem

Solution

(Parallel)

Post

Processing

(Serial)

Breakdown of Power-Flow Solution
Implementation in Hardware

HPEC 2003

Minimum-Degree Ordering
Algorithm (MMD)

Reordering columns to reduce fill-ins while performing
LU factorization
Reduce floating point operations and storage
Compute column permutation pattern once
Apply throughout power-flow analysis for that set of
input bus data

64041564041530585429438542943831596IEEE 300-bus

55280552807193400953400954509IEEE 118-bus

653565352702580625806887IEEE 30-bus

SubMultDivSubMultDiv

With MMDWithout MMD

HPEC 2003

RING TOPOLOGYRING TOPOLOGY

Processor 0 Buffer n-2

Buffer n-1

Buffer 1Processor 1 Processor n-1Buffer 0

SDRAM SRAM

Memory Controller

RAMRAM RAM

Memory Controller

FPGA

• Nios Embedded Processors

• Buffers are on-chip memories; interprocessor communication

HPEC 2003

Communication: used DMA for passing messages Communication: used DMA for passing messages
Buffers are onBuffers are on--chip memorieschip memories
Trapezoids are arbitratorsTrapezoids are arbitrators

Processor 1 Processor 2

Buffer out 1

Buffer out 2Buffer in 1

Buffer in 2

DMA1

DMA2

SDRAM SRAM

Hardware Model using Nios
Processor

HPEC 2003

Stratix FPGA

Stratix 1S25F780C6 Resources
LEs 25,660
M512 RAM blocks (32 x 18 bits) 224
M4K RAM blocks (128 x 36 bits) 138
M-RAM blocks (4K x 144 bits) 2
Total RAM bits 1,944,576
DSP Blocks 10
Embedded multipliers 80
PLLs 6

HPEC 2003

Floating Point UnitFloating Point Unit

FDIV

FMUL

FADD

Pre-Normalize
Reciprocal
Iteration

Multiply
Round and

Post-Normalize
Newton Raphson

ROM Lookup

Select and
Round

Near Path
Predict and

Add

Far Path
Swap and Shift

Near Path
Leading Zero

And Shift

Far Path
Add

Pre-Normalize Multiply Post-Normalize Round

HPEC 2003

FloatingFloating Point UnitPoint Unit

IEEEIEEE--754 Support754 Support
Single Precision Format, Round to NearestSingle Precision Format, Round to Nearest
Round Nearest Rounding,Round Nearest Rounding, DenormalizedDenormalized Numbers, Special NumbersNumbers, Special Numbers

88

88

00

MULsMULs

N/AN/A99656511661166FDIVFDIV

63.8863.8861346134NIOS NIOS
+ FPU+ FPU

926926

10881088

LEsLEs

1144107107FMULFMUL

11339191FADDFADD

Pipeline RatePipeline Rate
((clk clk cycles)cycles)

LatencyLatency
((clk clk cycles)cycles)

FmaxFmax
(MHz)(MHz)

HPEC 2003

PERFORMANCE ANALYSIS
Why?

Prototype is not intended for industrial performance
Show potential performance as a function of available H/W
resources

Analysis performed for highAnalysis performed for high--performance multiperformance multi--processor processor
systemsystem

Estimate of number of clock cycles and timing
Communication latency
Arithmetic latency

Model in MATLAB
80 MHz pipelined Floating-point Unit
Variables

Number of Processors (2, 4, 6, 8)
Size of input data (power flow IEEE1648-bus, IEEE7917-bus)

System constraints: memory access, size of FPGA
chip, system speed

HPEC 2003

TIMING OF PERFORMANCE MODELTIMING OF PERFORMANCE MODEL
Running Time vs No of Processor for matrix

size 2982x2982 from IEEE1648-bus

0
50

100
150
200
250

0 5 10

No of Processor

R
u

n
n

in
g

 T
im

e

(m
s

) Nios

PowerPC

•Nios embedded processors on Altera Stratix FPGA, running at 80 MHz

8 processors:

- 1648-bus: 64.179 ms

- 7917-bus: 1106.676 ms

• 400 MHz PowerPC on Xilinx Virtex 2 FPGA with 80 MHz FPU

8 processors:

-1648-bus: 18.992 ms

-7917-bus: 256.382 ms

• WSMP – 1.4 GHz, 256 KB Cache, 256 MB SDRAM, Linux OS
- 1648-bus: 146.435 ms
- 7917-bus: 666.487 ms

Running Time vs No of Processor for matrix
size 14508x14508 from IEEE7917-bus

0
1000
2000
3000
4000
5000

0 2 4 6 8 10

No of Processor

R
u

n
n

in
g

 T
im

e

(m
s

) Nios

PowerPC

	Abstract button:
	Presentation button:
	Agenda button:
	Next button:

